



DOI: <https://doi.org/10.69648/VPKL5644>

International Journal of Art and Design (IJAD),  
2025 2(2): 19-38

ijad.ibupress.com

Online ISSN: 2955-2400



Application: 02.10.2025

Revision: 11.11.2025

Acceptance: 10.12.2025

Publication: 30.12.2025



Horst, D. J., Lisboa, J. S., Rudnick, V. L., & dos Santos, V. J. (2025). The influence of artificial intelligence on furniture design: Developing creative and sustainable solutions. *International Journal of Art and Design*, 2(2), 19-38. <https://doi.org/10.69648/VPKL5644>



Diogo José Horst, Joana Soares Lisboa, Vitor Luis Rudnick, Vitor José dos Santos

Furniture Design Technical School, National Service of Industrial Apprenticeship – SENAI, São Bento do Sul – SC, Brazil.

Email:

[diogo.horst@edu.sc.senai.br](mailto:diogo.horst@edu.sc.senai.br)

Diogo José Horst

<https://orcid.org/0000-0003-4971-4912>

Joana Soares Lisboa

<https://orcid.org/0009-0006-6826-803x>

Vitor Luis Rudnick

<https://orcid.org/0009-000-4182-9454>

Vitor José Pereira dos Santos

<https://orcid.org/0009-0009-3500-2579>



# The Influence of Artificial Intelligence on Furniture Design: Developing Creative and Sustainable Solutions

Diogo José Horst, Joana Soares Lisboa,  
Vitor Luis Rudnick, Vitor José dos Santos

## Abstract

The revolutionary effects of artificial intelligence (AI) on furniture design and production are examined in this article. AI is revolutionizing design approaches, streamlining manufacturing procedures, customizing user experiences, and enabling the development of creative and sustainable solutions. Important developments are covered, such as smart manufacturing and generative design, emphasizing the difficulties and potential paths of this technology integration in the furniture sector. We investigated the most up-to-date primary AI-powered generation bases for furniture design and produced a number of pieces with distinctive designs. The findings show that AI uses data analysis and machine learning algorithms to improve the production of more ergonomic, sustainable, and customized furniture. Neural networks and generative design methods offer new formal and aesthetic languages in the field of aesthetics, broadening the creative horizons of designers. In terms of innovation, AI makes it possible to integrate parametric modeling, additive manufacturing, and predictive simulation into intelligent design processes that are in line with Industry 4.0 concepts. Despite improvements, issues with authorship, ethics, and reliance on technology still arise. It is concluded that a new paradigm in furniture design, driven by co-creation, efficiency, and sustainability, is established by the synergy between human creativity and computational intelligence.

**Keywords:** Artificial Intelligence, Furniture Design, Generative Design, Additive Manufacturing, Personalization, Sustainability, Industry 4.0.

## Overview

With the advent of artificial intelligence, the furniture industry—which has historically been driven by aesthetic, practical, and ergonomic principles—finds itself at a tipping point. AI is now a tool that pushes the limits of product design creativity, efficiency, and interaction rather than being a futuristic technology. AI has the ability to improve all aspects of furniture design, from the initial stages of conception to production and the post-purchase experience. The purpose of this article is to examine the various facets and consequences of artificial intelligence (AI) and how it is impacting and forming the future of furniture design (Lee et al., 2018).

Furniture's inherent value is being redefined by the development of artificial intelligence, which is transforming it from a standardized product to a highly customized solution. Furniture design has historically prioritized scalability and consistency within the mass production paradigm. However, widespread customization is now possible thanks to AI systems based on machine learning, giving customers direct control over the final product's appearance, functionality, and form (Castro & Costa, 2019).

Statistics on personal preferences, surroundings, and ergonomic requirements can be processed to create furniture that is extremely functional, adaptable, and integrated into intelligent ecosystems. By transforming furniture design into a user-centered process, these analytical and adaptable tools guarantee that the post-purchase experience is an extension of the product's conceptualization (Liu, 2025).

Beyond customization, AI is becoming a vital tool for resource efficiency and sustainability in the furniture industry. In addition to aesthetic form, generative design aims for structural optimization for maximum strength and minimum weight through millions of iterations in record time, producing pieces that use less material (Italia et al., 2023; Lodhi et al., 2025).

Furthermore, a significant decrease in waste on the manufacturing floor is made possible by the use of machine learning algorithms in cutting optimization and material simulation, which also makes it easier to choose raw materials with less of an impact on the environment. AI is positioned as a revolutionary agent that is crucial for balancing consumer demand with the demands of ecological responsibility due to its efficiency and the promotion of Circular Design (Trucillo et al., 2025; Masoumi et al., 2025).

This integration is not without difficulties, though. The emergence of AI necessitates a reinterpretation of the designer's function, which shifts from sole creator to curator and supervisor of generative systems, in charge of establishing the initial parameters and choosing the most promising solutions. Concerns about authorship and originality in machine-assisted design, as well as the unavoidable existence of algorithmic biases brought on by training data, are equally crucial. In order to provide a fair assessment of the industry's future, this study attempts to explore the potential of AI in furniture design while also critically analyzing the ethical and methodological issues raised by this human-machine cooperation.

This article's primary goal is to analyze the many aspects and ramifications of artificial intelligence (AI) and how it is influencing and reshaping furniture design. The study examines AI's potential to improve every phase of product design, from initial conception to production and the post-purchase experience, by examining how it may be used as a tool to push the limits of creativity, efficiency, and interaction. The study's specific objectives are to examine the most recent fundamental underpinnings of AI-driven furniture production, talk about how the technology allows customization, maximizes sustainability and resource efficiency, and—most importantly—critically examine the methodological and ethical concerns brought up by human-machine collaboration, such as authorship and algorithmic biases.

## Design and AI

AI is a collection of technologies that enable machines to mimic human intellect, including perception, learning, reasoning, and decision-making. AI is mostly shown in design through:

- Generative Design: algorithms that investigate hundreds of design possibilities according to the designer's specified characteristics and limitations, including material, cost, strength, and aesthetics: GD is an AI-driven design technique in which the software use algorithms to investigate thousands of possible solutions in a virtual design space once the designer specifies the goals and limitations, including material, cost, strength, and aesthetics. With its conceptual origins in topological optimization (Bendsoe & Sigmund, 2003), this method overcomes the constraints of human design and has a favorable influence on sustainability and production costs by enabling the fabrication of optimized geometries with minimal material utilization (Vieira, 2024).

- Machine Learning (ML): predictions, classifications, and optimizations are made possible by systems that identify patterns in data. It can be applied in design to maximize material utilization or examine consumer preferences. The creation of algorithms that enable systems to learn from data, spot patterns, and make judgments or predictions with little assistance from humans is the main goal of ML, a fundamental subfield of AI (Nagpal et al., 2023).
- Computer Vision (CV): the capacity of computers to decipher images, used for interior design 3D mapping or quality inspection. Real-time fault detection and classification on the production line is possible using CV systems, which are typically coupled with high-resolution cameras and machine learning algorithms (mostly Deep Learning), such as: Surface flaws in wood panels, MDF/ MDP panels, or coatings include stains, scratches, chips, undesired knots, and color variations. Dimensional Inspection: Accurate confirmation of joints, holes, and cuts to make sure the components adhere to the necessary millimeter tolerances. Presence/Absence: Verifying the proper application of every component, such as hardware or labels (Piantino, 2025).
- Natural Language Processing (NLP): makes it possible to communicate with design systems using human language, which makes idea prototyping easier. The goal of the AI field of NLP is to enable computers to comprehend, interpret, and produce human language (text or speech). The contact between the customer (or designer) and the generative algorithm in design is mostly facilitated by NLP (Brueckner et al., 2023). In contrast to the conventional intuitive and iterative method, the integration of these technologies enables a more data-driven and exploratory approach to design.

## Form Exploration and Generative Design

In the furniture sector, generative design is arguably the most innovative use of AI. Designers can enter a set of functional, aesthetic, structural, and material criteria into software that has generative design algorithms. After that, the system produces a wide range of design solutions, many of which would be unthinkable using traditional techniques (Krsteska et al., 2023). Examples include:

- Designing chair structures with the least amount of weight and maximum strength.
- The creation of intricate and natural shapes for tables or shelves that optimize

material utilization and reduce waste.

- Investigating beautiful patterns using fractal or biomimetic algorithms to create furniture that is visually distinctive.

## Customization and User Experience

AI makes large customization possible, giving customers more control over the furniture design process (Bier et al., 2024):

- Intelligent Configurators: websites that recommend and produce exactly fitting furniture designs depending on user preferences (style, color, budget, and room size).
- Product Recommendation: to enhance the purchasing experience, machine learning algorithms examine the customer's past purchases, browsing patterns, and design trends to recommend matching furniture and accessories.
- Adaptive Design: furniture that can be made to dynamically respond to the surroundings or demands of the user based on information gathered by sensors (e.g., an office desk that automatically adjusts its height).

## Sustainability and Material Optimization

An increasingly important factor in the sector is the concern for sustainability. The creation of more ecologically friendly furniture is greatly aided by AI (Mirghani, 2025):

- Cutting Optimization: AI algorithms can minimize material waste by identifying the best cutting patterns for sheets of fabric, metal, or wood.
- Intelligent Material Selection: AI systems can evaluate the strength, cost, and environmental impact of several materials to suggest the most appropriate and sustainable choice for a particular design.
- Design for Recycling and Disassembly: AI can help create furniture that is simpler to disassemble and whose parts can be recycled or used again after their useful lives.

## Robotics and Intelligent Production

Industry 4.0 incorporates AI into production to create more autonomous and effective processes (Hussain, 2025; Boudesks et al., 2025):

- Collaborative Robotics (Cobots): AI-powered robots assist humans in tasks like assembly, finishing, and inspection, improving precision and lowering mistakes.
- 3D Printing: AI makes it possible to create complex geometries with less waste by optimizing the 3D printing procedures for furniture components, from material selection to manufacturing trajectory.
- Predictive maintenance reduces downtime and maintenance expenses by using sensors in production equipment in conjunction with machine learning algorithms to anticipate issues before they happen.

## Difficulties and Ethical Issues

There are obstacles to overcome when incorporating AI into furniture design, despite its enormous potential (Tredinnick et al., 2023):

- Learning Curve: in order to use and maximize AI tools, designers and manufacturers must pick up new abilities.
- Implementation Cost: for small and medium-sized enterprises, purchasing cutting-edge technology and software can be a substantial financial commitment.
- “Black Box” Issue: due to the intricacy of some AI algorithms, it may be challenging to comprehend how specific design choices are made, which raises concerns around accountability and authorship.
- Originality and Creativity: while AI can produce a wide range of possibilities, human designers are still essential for curating, adding cultural significance, and guaranteeing aesthetic originality. AI should be viewed as a tool to supplement human creativity rather than as a substitute for it.
- Data Security and Privacy: information security and privacy are issues that are brought up by the gathering of user preference data.

## Furniture Design Styles

A variety of stylistic approaches that represent various aesthetic concepts and material selections are included in furniture design. While modern design prioritizes clean lines and modern materials like glass, metal, and steel, classic style stresses subtlety and elegance through organic shapes and noble materials like wood. While minimalist design emphasizes simplicity, utility, and clean spaces, rustic interiors use raw wood, stone, and iron to create a warm feeling. Scandinavian design combines light wood and neutral hues with functionality, comfort, and simplicity. Urban warehouses with exposed concrete, steel, and iron serve as an inspiration for industrial design. Provençal and Shabby Chic styles, which feature faded wooden or iron furnishings in pastel or white tones, are symbolic of romantic and delicate aesthetics. Vintage design, which frequently combines colors and textures, reinterprets earlier decades using traditional shapes and contemporary modifications. Natural materials like bamboo and rattan, together with themes that allude to lush, tropical settings, are used in tropical style to incorporate bright and cheery aspects. Table 1 lists the primary furniture styles with an emphasis on key components and materials:

**Table 1**

*Main Furniture Styles*

| Style        | Key Characteristics                            | Typical Materials                         |
|--------------|------------------------------------------------|-------------------------------------------|
| Classic      | Sophisticated, elegant, organic shapes         | Wood, noble materials                     |
| Modern       | Clean lines, contemporary aesthetic            | Glass, metal, steel                       |
| Rustic       | Cozy, warm, natural feel                       | Raw wood, stone, iron                     |
| Minimalist   | Simplicity, functionality, uncluttered spaces  | Light wood, neutral materials             |
| Scandinavian | Simplicity, comfort, functional, neutral tones | Light wood, textiles, neutral colors      |
| Industrial   | Urban, warehouse-inspired, raw textures        | Iron, steel, exposed concrete             |
| Provençal    | Romantic, delicate, vintage-inspired           | Distressed wood, pastel or white finishes |

| Style       | Key Characteristics                              | Typical Materials              |
|-------------|--------------------------------------------------|--------------------------------|
| Shabby Chic | Romantic, delicate, intentionally distressed     | Wood, iron                     |
| Vintage     | Nostalgic, classic forms with modern adaptations | Wood, metal, mixed materials   |
| Tropical    | Vibrant, lively, nature-inspired motifs          | Bamboo, rattan, natural fibers |

## AI-Powered Furniture Creation

New AI-powered picture generating systems provide a variety of features that improve digital content production and creative workflows. While Raphael AI guarantees infinite creation with excellent image quality and privacy security, programs like OpenArt, Pixelcut, and Canva AI offer high-quality outputs with sophisticated editing and customizing capabilities. Rapid image production with flexible parameters is made possible by text-to-image models like DeepAI, Nightcafe Studio, Stable Diffusion, and popular AI systems like ChatGPT, Meta AI, Gemini, and Copilot. High-resolution outputs and user-driven customization are further supported by specialized platforms such as Leonardo AI, Craiyon, and DreamStudio. When taken as a whole, these advancements show how AI may be used into creative practice to increase productivity, adaptability, and customized design solutions. The AI services for creating images are displayed in Table 2 with an emphasis on features and functionalities.

**Table 2**

*AI-powered image generation platforms*

| Platform   | Type / Model       | Key Features                                                                  | Limitations / Notes                     |
|------------|--------------------|-------------------------------------------------------------------------------|-----------------------------------------|
| OpenArt    | AI image generator | Multiple artistic styles, templates, advanced editing, high-resolution output | Paid features may apply for full access |
| Raphael AI | FLUX.1-Dev model   | Unlimited free image generation, superior quality, privacy protection         | Free version only; model-specific       |

| Platform            | Type / Model                   | Key Features                                                   | Limitations / Notes                           |
|---------------------|--------------------------------|----------------------------------------------------------------|-----------------------------------------------|
| Pixelcut            | AI image generator             | Rapid image creation, editing, customization                   | Focused on quick content creation             |
| Canva AI            | Graphic design platform + AI   | Image generation, editing, customization                       | Integrated within a broader design platform   |
| DeepAI              | AI text-to-image               | High-quality image generation without account, editing options | Limited advanced customization                |
| Nightcafe Studio    | AI text-to-image               | Up to 20 free images, editing, customization                   | Free plan limited to 20 creations             |
| Stable Diffusion    | AI text-to-image               | Fast, high-quality output, editing and custom generation       | Requires some technical setup for optimal use |
| Fotor               | Online photo/video editor + AI | Image generation, editing, customization                       | Web-based limitations; some features paid     |
| ChatGPT             | AI chatbot + text-to-image     | Image generation with editing and customization                | Primary function is text-based interaction    |
| Meta AI             | AI text-to-image               | Image generation, editing, customization                       | Platform-dependent                            |
| Gemini (Google)     | AI text-to-image               | Image generation, editing, customization                       | Limited public access                         |
| Copilot (Microsoft) | AI text-to-image               | Image generation, editing, customization                       | Integrated in Microsoft ecosystem             |
| Leonardo AI         | AI image generator             | Editing and customization options                              | Paid subscription for advanced features       |
| Craiyon             | AI image generator             | Editing options, high-quality output                           | Simpler interface, less advanced features     |
| Dream-Studio        | AI image generator             | Editing and customization, high-resolution output              | Subscription may be required for full use     |

The outcomes of the AI-powered created images, which take into account the various furniture styles with essential materials and attributes, are displayed in Figures 1–9.

**Figure 1**

*Modular Shelving*



The furniture piece in Figure 1 expertly fuses De Stijl/Neoplasticism with French Classicism, resulting in a striking Contemporary and Eclectic aesthetic. The design contrasts clean, modular forms finished in simple white lacquer (aligning with Modern principles) with embedded niches of carved cherry wood featuring ornate, organic detailing typical of Classic styles. This deliberate material and stylistic juxtaposition create an asymmetric yet balanced modular structure whose primary value is its complex aesthetic composition. The design reflects the capability of AI systems like Manus to blend traditional, hand-carved elements with contemporary forms explored via generative algorithms, suggesting significant potential for customized modular production.

**Figure 2**

*Coffee Table*

Styles used in Figure 2: Industrial, Rustic/Retro, Futuristic/Minimalist. Materials used: Brushed steel, reclaimed wood, frosted acrylic, LED lighting, and rubber. AI used: ChatGPT. This coffee table epitomizes a compelling hybrid design, fusing Industrial/Urban aesthetics with rustic and technological elements. The dark metal and iron structure, featuring riveted panels and exposed fasteners, strongly aligns with the Industrial style, recalling the raw textures and warehouse-inspired look of exposed concrete and steel. This harsh urban framework is deliberately contrasted by a visible-grain wooden tabletop, which introduces the warm, natural feel of the Rustic style. The most significant contrast, however, is the integration of technology, notably the sleek LED lighting and robust corner guards that lend a futuristic, almost sci-fi appearance. The tabletop itself hints at functionality beyond its core purpose, possibly incorporating features like integrated wireless charging, positioning the piece as an example of the emerging paradigm of Smart and Connected

Furniture. Overall, the table functions as a dual-level, aesthetically complex piece that embodies the synergy between diverse styles and smart technology.

**Figure 3**

*Futuristic Armchair*



Figure 3 was created by Manus A.I. The main materials would be transparent acrylic for the outer shape, polished metal for the base, and velvet for the upholstery, complemented by integrated LED lighting. This armchair embodies a Futuristic and Organic aesthetic, defined by fluid, curvilinear, cocoon-like forms that place it firmly within contemporary high-tech design. The chair achieves visual lightness through its transparent outer shell (likely acrylic or polycarbonate), which highlights the internal structure and the plush, bi-colour upholstery in deep teal and grey. The base features a complex, aerodynamic, and twisted "X" shape made of polished metal, suggesting a reliance on advanced engineering. Notably, the design integrates a subtle LED light line within the metal framework, signalling its potential as Smart and Connected Furniture. The implicit ergonomics, combined with the extreme complexity of its free-form geometry, strongly suggest that the piece is a product of Generative Design and requires 3D printing for its fabrication, pushing the boundaries of traditional form-making.

**Figure 4**

*Dining Table*



Styles used in Figure 4: Scandinavian, minimalist, industrial, rustic. Materials used: Natural oak wood, white lacquered elements, raw steel structure, reclaimed wood with aged texture. AI used: Lovart. This dining table represents a compelling hybrid design, achieving a clear marriage between Industrial/Urban and Rustic/Sustainable aesthetics. The base structure, fabricated from exposed, raw metal or steel with 'X' cross braces, emphasizes the Industrial look, reminiscent of urban warehouses. Conversely, the main tabletop is constructed from noticeably reclaimed or salvaged wood planks, showcasing worn textures and colours that introduce the natural, warm feel of the Rustic style. This dichotomy is further complicated by a smooth, light wood section with white edges, injecting a touch of Modern/Minimalist functionality, particularly as this suggests a modular or extensible component. This multi-material composition directly relates to the application of AI, where Generative Design can optimize the structural integrity of the metal base, while algorithms ensure Cutting Optimization and facilitate Circular Design by utilizing reclaimed materials. Ultimately, the table's modularity and material contrast highlight its potential for extensive customization via intelligent configurators.

**Figure 5**

*Art Deco Armchair*



Figure 5, a design by Gemini, represents a potent Renewed Art Deco aesthetic, distinguished by its bold geometry and luxurious materials, including emerald velvet upholstery and fan-patterned wood inlays highlighted with gold-toned metallic accents. The design achieves a Contemporary/Vintage hybrid by intentionally contrasting the soft texture of the velvet and the nobility of the wood with sleek, polished metal legs. This piece is highly relevant to AI-driven furniture manufacturing because Generative Design (GD) algorithms can be applied to optimize the internal structural support for maximum strength and minimum weight. Crucially, the design is perfectly suited for Intelligent Configurators, an AI tool that would enable mass customization by allowing clients to instantly personalize the colour, fabric, and metallic finish, greatly enhancing the final product's personalized value.

**Figure 6**

*Nightstand*




Figure 6 also designed by Gemini, shows a luxurious nightstand serves as the focal point of the bedroom setting, defined by its sleek, rounded oval silhouette and the dramatically unique, undulating “wavy” carving across its dark wood drawer fronts. Topping the sculptural body is a sophisticated dark marble countertop, which, along with a subtle recessed metal base, highlights the piece’s high-end, contemporary-luxury style. The surrounding room maintains a contrasting “Quiet Luxury” aesthetic, featuring light wood flooring and crisp white bedding, which ensures the rich materials and three-dimensional texture of the statement nightstand remain the centre of attention.

**Figure 7**

*Pod Chair*



Figure 7 shows this contemporary armchair featuring a futuristic pod design, emphasizing both aesthetic appeal and a secluded sense of comfort. Its structure is defined by a smooth, white fiberglass or high-density composite shell that creates an organic, egg-like cocoon. The minimalist shell is elegantly contrasted by a natural light wood circular base and an internal upholstery of thick, soft, beige fabric, suggesting high ergonomic comfort. A standout feature is the integrated blue LED light strip circling the lower part of the shell, which injects a sophisticated technological element and ambient glow, solidifying its status as a striking, modern statement piece. The furniture was designed using Manus.

**Figure 8**

*Shelf*



This furniture piece masterfully encapsulates Organic Modern and Mid-Century design sensibilities through its exclusive use of warm-toned wood, likely oak or walnut. The design is characterized by soft, continuous lines and significantly rounded edges throughout the entire structure. Above the functional lower section—which integrates a drawer and a cabinet with seamless, recessed handles—the open shelving unit is a sculptural element. It features fluid, asymmetrical internal dividers that eschew conventional straight lines, transforming the unit from a simple bookcase into a highly sophisticated, aesthetically pleasing focal point that highlights the natural beauty of high-quality craftsmanship. The furniture was designed using Fotor.

**Figure 9**

*Hybrid armchair*



This striking armchair from Figure 9 is a dramatic study in eclectic juxtaposition, successfully blending historical savagery with contemporary sleekness. The body of the chair is defined by its dark, imposing wooden structure, featuring intricate Norse or Viking-inspired carvings, including distinct dragon heads on the armrests, lending it a powerful, mythic, and rustic gravity. In sharp contrast, the upholstery is a bold, high-contrast zebra print fabric, injecting a playful, Pop Art sensibility. This robust, carved upper half is unexpectedly supported by a clean, pure white spherical swivel base, crafted from a glossy material like fiberglass. The result is a highly functional yet fiercely decorative statement piece, masterfully fusing traditional craftsmanship with futuristic geometry. The furniture was designed using OpenArt.

## Conclusions

The study's investigation, which includes the production of furniture pieces with distinct designs using primary AI generation bases, supports the conclusion that AI can improve the production of more ergonomic and sustainable furniture. Collectively, these tools demonstrate the increasing incorporation of AI into creative workflows to enhance the flexibility, efficiency, and personalization of digital content creation. The resulting AI-generated images, which consider various furniture styles with essential materials and attributes.

AI in furniture design suggests that human-machine cooperation will become more mutually beneficial in the future. The article concludes that the synergy between human creativity and computational intelligence establishes a new paradigm in furniture design.

Future prospects include the development of: Intuitive AI interfaces for designers; Smart and connected furniture that integrates naturally into smart home ecosystems; Advanced circular design with closed-loop systems for materials and component monitoring to facilitate recovery and reuse; Predictive trend analysis to anticipate consumer behavior.

In short, AI does not replace the designer, but acts as a catalyst for co-creation, efficiency, and sustainability, expanding creative horizons through new formal and aesthetic languages.

## References

Bier, H., Hidding, A., Brancart, S., Luna-Navarro, A., Khademi, S., & van Engelenburg, C. (2024). AI-supported approach for human-building interaction implemented at furniture scale. *Frontiers in Computer Science*, 6, Article 1295014. <https://doi.org/10.3389/fcomp.2024.1295014>

Bendsøe, M. P., & Sigmund, O. (2003). Topology optimization: Theory, methods, and applications. Springer Science & Business Media.

Bousdekis, A., Bountourelis, S., & Bampoulas, G. (2025). Machine learning-driven preventive maintenance for fibreboard production in Industry 4.0. The Science and Information (SAI) Organization Journal, 16(3), 92–105.

Castro e Costa, E., Jorge, J., & Duarte, J. (2019). Comparing digital tools for implementing a generative system for the design of customized tableware. *Journal of Computational Design and Engineering*, 6(1), 119–144.

Hussain, M. Z. (2025). AI-driven innovations in 3D printing: Optimization, automation, and intelligent control. *Journal of Functional Biomaterials*, 9(10), 329.

Italia, M., Papile, F., Santi, R., & Del Curto, B. (2023). Sustainable material selection framework: Taxonomy and systematisation of design approaches to sustainable material selection. *Sustainability*, 15(24), 16689. <https://doi.org/10.3390/su152416689>

Krستسکا, S., Risteski, S., & Donev, M. (2023). Sustainable furniture modelling by using generative design. In Proceedings of the 19th International Conference on Creative Mathematics and Informatics (CMI 2023).

Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial artificial intelligence for Industry 4.0-based manufacturing systems. *Manufacturing Letters*, 18, 20–23. <https://doi.org/10.1016/j.mfglet.2018.09.002>.

Liu, S. (2025). Intelligent design method of customized furniture based on modular theory and artificial intelligence. *Journal of Computational Methods in Sciences and Engineering*, 25(4), 2383–2394.

Lodhi, S. K., & Zeb, S. (2025). The role of AI in circular manufacturing: towards a zero-waste economy provides its headings. *Enrichment: Journal of Multidisciplinary Research and Development*, 3(1), 124–134. <https://doi.org/10.55324/enrichment.v3i1.339>.

Masoumi, A., & Bond, B. H. (2025). Machine learning-based prediction of processing time in furniture manufacturing to estimate lead time and pricing. *European Journal of Wood and Wood Products*, 83(1), 13. <https://doi.org/10.1007/s00107-024-02177-w>.

Mirghani, Y. M. (2025). AI-driven transformation in furniture production: Enhancing supply chains, design, and waste reduction. *European Scientific Publishers Journal of Engineering and Technological Advances (ESP JETA)*, 5(1), 109–118.

Nagpal, P. et al. (2023). Machine learning and AI in marketing–Connecting computing power to human insights. *International Journal of Intelligent Systems and Applications in Engineering*, 12(664), 659–664. <https://doi.org/10.3390/info14120664>.

Piantino, J. M. (2025). Computer vision and automated inspection: An approach for continuous improvement in industrial production. (Undergraduate Thesis). Federal University of Lavras, Brazil.

Tredinnick, L., & Laybats, C. (2023). Black-box creativity and generative artificial intelligence. *Business Information Review*, 40(3), 98–102. <https://doi.org/10.1177/02663821231195131>.

Trucillo, P., Chaouali, F., & Portioli, F. P. A. (2025). Sustainable material selection for interior design furniture: A simple procedure based on environmental analysis and structural optimization. *Materials*, 18(9), 2023. <https://doi.org/10.3390/ma18092023>

Vieira, B. L., & Bruscato, L. M. (2023). Parameters for the creation of generative visual identity systems. *Studies in Design*, 31(3), 170–187.